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A solution for the profile of a small drop or bubble symmetrical about a vertical axis 
and at rest in a second fluid is obtained as a first-order perturbation of a circle. At the 
end of the drop opposite the apex, the perturbation approach breaks down and a 
matching zero-gravity solution is used. The results agree with numerical solutions and 
indicate that the pendant-drop profile of maximum volume fitting a given small 
vertical tube intersects the exit plane at  very nearly 90". This enables the maximum 
volume to be determined accurately from a force balance. 

1. Introduction 
Numerical solutions for the equilibrium shape of a drop of fluid symmetrical about 

a vertical axis and at  rest in a second (immiscible) fluid were obtained as early as 1883 
by Bashforth & Adams and the number and accuracy of such solutions has since 
increased, the most recent contribution being the extensive tables of Hartland & 
Hartley (1976). 

The case of a pendant drop or bubble attached to a vertical sharp-edged tube 
(figure 1)  is of particular practical interest. The numerical results indicate that there 
exists a family of possible drop profiles one of which encloses a maximum volume 

Experimentally, the slow growth of a pendant drop proceeds through a range of 
profiles until a critical volume Krlt is reached when part of the drop detaches itself. 
Whether = V,,, depends on whether all the equilibrium profiles reached during 
the growth process are stable to small perturbations. This has recently been shown to 
be the case for drops of constant volume on tubes of radius less than 3.219(a/pg)), 
where a represents the interfacial tension, p the difference in the densities of the fluids 
and g the acceleration due to gravity (Pitts 1976; Michael & Williams 1976). 

The contribut,ion of the present work is to provide an analytical solution for the 
profiles of small drops (or bubbles). A simple expression for V,,, is also obtained. The 
analysis is first carried out for the case of a pendant drop or bubble and then extended 
( 5  5) to sessile drops or bubbles. 

2. Profile of the lower part of a pendant drop 
For simplicity the situation portrayed in figure 1 will be considered: here the drop 

density p1 is greater than the density pz of the surrounding fluid, though the results 
obtained are equally applicable to the inverted situation (figure 2) in which p1 c pz, 
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Fluid 1 Fluid 2 

Fluid 2 

FIGURE 1 FIGURE 2 

FIGURE 1. Pendant drop: p1 > p2. 
FIGURE 2. ‘ Pendant ’ drop or bubble: p1  < p2 .  

FIGURE 3. Choice of co-ordinates. 

which includes the case of a ‘pendant’ bubble. The origin of the upward-pointing y 
axis and the horizontal x axis is taken as the apex of the drop (figure 3). 

The equation of the drop profile is well known but will be derived for completeness. 
Assuming any flow into or out of the drop to be so slow that associated pressure 
variations and viscous stresses are negligible, the pressure variation in the two fluids 
is simply that required to balance gravitational forces: 

p ,  = -p,gy+constant, p ,  = -p,gy+constant (I) ,  (2) 

(3) 

( p  = pressure, g = acceleration due to gravity). The interface condition is that 

p1 - p ,  = a(R,l +R,l) 

(a = interfacial tension, R, and R, are respectively the radii of curvature of the 
interface in a plane containing the normal and the drop axis and in the perpendicular 
plane containing the normal, the radius being positive if the relevant centre of curvature 
lies on the drop side of the interface). 
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Elimination of p1 and p ,  from (1)-(3), together with the requirement that 
R, = Rb = R (radius of curvature of the apex) a t  y = 0, yields 

2 a  
(4) 

in which p = p1-p2. Substituting the appropriate expressions for R, and R, now 
yields the ordinary differential equation for the drop profile: 

d2y/dx2 x-ldyldx 2 pgy 
[1+ ( d ~ / d x ) ~ ] 9 + [ 1 +  ( d ~ / d x ) ~ ] k  = 3 - 7 ’  

In  dimensionless variables (5) becomes 

= 2 -py‘, d2 y’/dx’2 x‘-l d y  ‘ldx‘ 
[ 1 + ( d y ‘ / d ~ ‘ ) ~ ] S  + [ 1 + ( d y ’ / d ~ ’ ) ~ ] h  

in which x’ = x/R, y’ = y / R  and /3 = pgR2/a. The shape of the profile is thus evidently 
determined solely by the dimensionless parameter /3 (the ‘shape factor ’), while the 
scale is determined by R. Henceforth the primes will be dropped for simplicity. 

An exact solution of (6) does not appear to exist, except for the special case ,I3 = 0 
(zero gravity or p1 = p,), when a circle is obtained, corresponding to a spherical drop: 

y =  l - ( l - X 2 ) k  (7) 

For small values of /3 the solution may be expected to resemble (7) closely over a 
large part of the drop profile and the obvious approach is therefore to apply per- 
turbation methods. Before doing so, (6) will be written in the simpler form 

I d  
--(xsinO) = 2 - p y ,  
x d x  

in which tan0 = dy/dx (9) 

(the primes now being omitted). Integration of (8) for the case /3 = 0 provides the 
differential form of ( 7 )  : 

x = sine. (10) 

For small p values the solution may be expected to have the form 

x = (l+e)sinO, (11) 

in which s is a small quantity. Substitution of (11)  in (8) ,  neglecting products of e 
and dsldx, yields 

y may likewise be expected to lie close to the value given by (7): 

xds ldx  + 2s = p y .  (12)  

y = [ l - - ( l - x * ) q ( l - ~ ) ,  (13) 

in which 7 is a small quantity. Substitution of (13) in (12) ,  neglecting products of p 
and 7, yields 

~ d s / d ~ + 2 ~  = p[1- (1 -x2)4]. (14) 
21-2 
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FIUURE 4 FIGURE 5 

FIGURE 4. Profile o f  a pendant drop or bubble. 

FIGURE 5. Magnitude of radius of curvature Rb 

At the drop apex E = O,? and integration of (14), together with this condition, 
yields the following equation for the dependence of the perturbation parameter 8 on 
B and x: 

E = p{* - [ 1 - (1 - X 2 ) t ] / 3 2 2 } ,  

the positive root applying in the vicinity of the apex. 
Equation (17) indicates that E increases from zero at  the apex to a maximum of 

i p  at the point P (figure 4), at which 0 = 0 and x _N 1.  Thereafter [with x decreasing 
and the negative root now required in (17)] E decreases through zero towards large 
negative values as x becomes very small. At these small x values the expression for E 
becomes 

and E ceases to be ‘small’ at  sufficiently small x values, whatever the value of p. 
The perturbation approach thus breaks down at the top of the profile, indicating 

that the profile no longer resembles a circle there. The reason for this is that for non- 
zero values of ,8 the profile does not close but forms a neck, afterwards widening again 
(figure 4). Qualitatively this can be explained as follows. The effect of the gravity 
term is to reduce the curvature of the profile, so that when it finally re-approaches the 
axis it does so a t  a shallower angle than in the circular, zero-gravity case. The radius 
of curvature R,, which is in fact the length 1 in figure 5, therefore decreases rapidly, 
unlike the circular case, where it remains constant and equal to R. Since the sum 
R;1+ R;l is only a slowly varying function of y [equation (4)], the rapid increase in 

E = p[ - 2/3x2 + 1 + O(xz)] (18) 

-# At the drop apex 8 = x = 0 and the dimensionless radius of curvature is 1. Hence 

d8 d8  
(tan8) = seca8- = - d% - d 

- - I = -  
dx2 d x  d x  dx’ 

Differentiating [ l l ) ,  neglecting products of  E and dsldx, gives cos 8 dO/dx = 1 - E - x dsldx, whence, 
at the apex, 

Combining [ 15) and [ 16) yields E = 0. 
d8/dx = 1 - E .  (16) 
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Ri l  necessitates a decrease in Ri l  to large negative values and the ourve turns sharply 
away from the axis. 

A solution for the neck region is developed in the next section. The rest of the present 
section is devoted to the integration of (1 l ) ,  using the expression obtained for e, to 
obtain the profile of the lower part of the drop. 

By combining (9) and ( l l ) ,  the differential equation of the (lower) drop profile is 
obtained: 

since e2 is always negligible in comparison with e. Except very close to P (figure a), 
where x approaches 1, 

and an expansion of the root in (19), neglecting products of 2el( 1 - x 2 ) ,  gives 

2 4 1  - 2 2 )  4 1 (20) 

X 

Again, the positive root applies below the point P (figure 4). 
On substituting from (13) for y ,  (21) gives 

EX d 
z{q[1- (1 -x2)4]}  = - 

(1  - x2)3 

and on making use of the expression (17) for e, this integrates to 

q[i - (1 - x2)4] = &? (2 In [i + (1 - x2)t]  + (1 - x2)-4} + constant. 

At the apex, x = 0 and (1 - x2)4 = 1, yielding 

constant = - 4$[2 In 2 + 11 

and 

i.e. 

q[i - (1 -x2)9] = Q P ( ~  In &[i + (1  - x2)4] + ( 1  - x2)-4 - i}, 

y = 1 - ( 1 - x2)t  - &8 ( 2  In a[ 1 + ( 1 - x2)4] + ( 1 - x2)-t - i}. (22) 

As mentioned above, (22) ceases to be valid as x - +  1,  since the approximation (20) 
breaks down. In this region however, E may be approximated by its maximum vdue 

e = Lp 
6 

and (19) reduces to 

which integrates to 
dyldx = X I (  1 - 2 2  + &3)4, 

y = - (1  - x2 + +/?)* + constant. 

The constant is determined by the condition that the solutions (25) and (22) match 
in the zone where both are valid. This zone will exist only for sufficiently small P, 
the condition for the validity of (22) being (20) and that for the validity of (23) [and 
hence (25)] being obtained from an expansion of e in the small quantity 1 - x2:  

which yields 
E = 6P[1- 2( 1 - x2) + O( 1 - x 2 ) 2 ] ,  

1 - 2 2  < 8. 
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If this condition is combined with (20) (in which 6 is approximated by Qp), an overlap 
zone is seen to exist for sufficiently small p, in which 

gp< 1-x2<&. 
I n  this zone (22) reduces to 

y = - (1 - x2)6 - &p( 1 - x2)-6 + [ 1 + Qp (1 + 2 In 2)] + smaller-order terms 

and (25) reduces to 

whence 

and (25) becomes 

y = constant - (1 - x2)6 - &8( 1 - x2)-6 + smaller-order terms, 

constant = 1 + &3( 1 + 2 In 2) 

y = - (1 -x2+ +,9)6+ 1 + #P(i + 2 In 2). 

1-x2+&3=0, 

(27) 

Equation (24) indicates that at  the point P, where x is a maximum (figure 4), 

i.e. 
and from (27) 

XP = 1+&B, 

yp = l+.BB(1+21n2). 

Sufficiently far above P, (22) again applies though not necessarily with the same 
constant of integration. The same matching procedure as applied above, however, 
indicates that the constant of integration is the same, so that (22) applies over the 
whole profile apart from the immediate vicinity of P, where (27) has to be used, and 
the upper part of the profile where the neck zone commences and E is no longer small 
[equation (IS)]. 

3. Profile of the neck of the drop 
For small values of /3 the profile approaches very close to the axis before being 

deflected away to form the neck, and the height of the neck region is consequently 
small (of the order of 8, as will be seen). The term on the right-hand side of (8) there- 
fore varies very little over the neck zone and to the first approximation may be taken 
as constant, with a value corresponding to y = 2: 

(30) 
I d  - - (z sin 0 )  = 2( 1 - p) = constant. 
x dx 

Equation (30) is integrable and yields 

x sin 8 = x2( 1 - p) + constant. (31) 

The constant is determined by the condition that the neck solution (31) and the 
perturbation solution (1 1) should match in the region adjoining the neck, although 
this will be the case only for sufficiently small /3 values. For such values the perturba- 
tion solution is valid down to small x values, E being given by (18). Substitution for 
E in (1 1) (neglecting products of E )  yields 

$sine = x2( i -p )+~p .  
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Comparison with (31) indicates that the constant is #/3 and the neck solution becomes 

sin8 = x(l-P)+#P/x. (32 )  

Before integrating (32 )  to obtain the neck profile, the radius of the narrowest part 
of the neck (the point N in figure 4, where 8 = 90°) may be established. From (32 ) ,  

1 = xN( 1 -/I) + 2P/3+, 

on choosing the appropriate sign and neglecting products of p. As will be seen, this 
value of xN agrees with that arrived at by a simple force balance and thus provides a 
check on the preceding calculations. 

The inflexion point I (figure 4) may also be located with the help of (32 ) :  

to first order in /I. Since this is the point at which the profile changes from concave to 
convex it may reasonably be said to be the boundary of the neck zone. Equation (18) 
indicates, however, that the perturbation solution is not yet applicable since 

8 = - 1 +p = O(1). 

Equation (32 )  may be integrated to obtain the neck profile as follows. After the 
substitutions 

(32)  becomes 

Substituting in (9) gives 

z = 4 1  -PI ,  a = 8P(1 -P),  (3% (36)  

(37 )  

(38 )  

sin 8 = (z2 + a)/z. 

dy/dx = tan 8 = - (z2 + a) / (z2  - z4 - 2az2 - a2)t, 

where here and in subsequent expressions for the neck profile the positive root applies 
below the point N .  Within the neck region z N x < 1 and a < 1 so the second and third 
terms within the root are always much smaller than the first and may be neglected. 
The fourth term, a2, is of the same order as the first, z2, close to N (zN = a) and so must 
be included: 

dY z 2 + a  _ -  - (I-p)- = -- dY 
dx dz (z2-a)4'  

Integrating yields 

Y=-[- 1 - P  2 + constant. (39) 

Once again the constant may be established from the condition that the neck solution 
matches the perturbation solution. As noted above, a t  the point I the perturbation 
parameter B is of order unity and according to (18) becomes 'small' only when 

x2 B xf. (40) 

z2 B a. (41) 

With the help of (34)-(36),  (40 )  leads to the requirement in the matching zone that 
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Making use of (41), together with (35) and (36), the neck profile (39) reduces to 

y = - #x2 - 4Pln ( ~ x / P ) ~  + constant + smaller-order terms (42) 

(43) 

in the matching zone. Likewise the perturbation solution (22) reduces to 

y = 2 - ix2 + #3 - 4Pln + smaller-order terms. 

Comparison of (42) and (43) indicates that the constant in (39) is equal to 

and the neck profile is thus 
2 +  4P+ 5P1n(6/P)22 

to the first order in 8. 

(33) and (34) in (45) yields 
The y co-ordinates of the points N and 1 can now be established. Substitution of 

YN = + hP[' f In (s/P>21s (46) 

The height of the neck zone, as characterized by yN - yz, is thus of the order of P, 
as mentioned earlier. 

4. Volume enciosed by the profiie 
By a process of integration and matching similar to that used to establish the drop 

profile, the volume enclosed by the profile between the apex and horizontal plane 
may be calculated, the starting point being the formula 

in which Y is the dimensionless volume ( =  actual volume/R3). The resulting expres- 
sions are: 

(50) 

which, like (22), is valid everywhere except in the immediate vicinity of the point P 
and the neck of the drop; 

(51) 

for the immediate vicinity of P, the positive root applying in both (50) and (51) if the 
intersection with the horizontal plane is below the point P (figure 4); 

(52)  

for the neck region, the positive root applying if the intersection with the horizontal 
plane is below the point N (figure 4). 

v/n = *(I -"a)* (x2+ 2)-  &!3(X2i- (1 -x2)-)+ 3(1 -x2)4) - t#( l - t f9) ,  

v/n = *( 1 - 5 2  + *a)* (x2 + 2 + 68) + # + 48 

Y/n  = x2[1 - ($P/x)2la (fx2 + QP) + $( 1 + p) 
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FIGURE 6. Profile of a sessile drop or bubble. 

Special cases of the above formulae are the volumes enclosed by planes intersecting 
at t,he points P, I and N ;  these are obtained from the relevant x co-ordinates [(28), 
(34) and (33)]: 

Vp/n = Q + $/3, v,/n = V,/n = *( 1 + /3). (53)-(55) 

To first order in /3, V, and V, are equal since the first term of (52) makes a contribution 
of order p2 in the region of the profile concerned. 

5. Sessile drops 
The general equations for the profile and volume of pendant drops derived above 

embody no assumptions as to the sign of ,8 or the form of the surface and so are equally 
applicable to sessile? drops or bubbles for which ,8 is negative (pl < pz; aee figure 6). 
The special equations for the values of x, y and V corresponding to the point P [(28), 
(29) and (53)] are likewise applicable. 

No inflexion point I occurs in the profile of a sessile drop. Instead the extreme de- 
parture from a circular profile which occurs as the profile re-approaches the axis 
takes the form of a curling up of the profile on itself. The point H (figure 6) a t  which the 
profile becomes horizontal may be considered the analogue of the point I for a pendant 
drop, being the last point a t  which the profile remotely resembles a circle. From (32), 
the x co-ordinate of H is found to be the same as that of I for a pendant drop of equal 

1/31 XH = ( -  $/3)&. (56) 

The corresponding expressions for yH and V, are found from (45) and (52): 

YH = 2 + *,8[2 +In ( - 6/,8)], V'/n = +( 1 +p). (57h (58)  

The point M at which the profile again becomes vertical (figure 6) is analogous t,o 
the point N for a pendant drop. Putting 8 = 270" in (32), M is found to have the same 
x co-ordinate as N in the case of a pendant drop of equal 1/31 : 

x, = ( -  $p)k (59) 

y, = 2+@[1+ln(6/,8)2], V, = +(I+/?). (60)7 (61) 

The corresponding expressions for yaf and V, are found from (45) and (52) to be 

t So termed for convenience, since they include the case of EL drop of denser fluid 'sitting' on 
a horizontal surface. 
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p = 10-4 p =  10-2 p = 0.03162 p = 0.09550 

1~00002 
1*00002 
8.16497 x 
8.16578 x loWs 
6.66667 x 
6.66778 x 10-6 
1.00004 
1*00004 
2.00037 
2.00037 
2.00077 
2.00077 
2.09455 
2.09455 
4.18921 
4.1 8921 
4.1892 1 
4.1892 1 

1.00167 
1.00168 
8.16497 x 
8.24789 x 
6.6666'7 x 
6.77968 x 
1.00398 
1.00402 
2.02132 
2.02 160 
2.04598 
2-04669 
2*11010 
2.11025 
4.23068 
4.231 10 
4.23068 
4.23 12 1 

1.00527 
1.00536 
0.145 196 
0.150007 
2-10819 x 
2.22551 x 
1.01258 
1.0 129 1 
2.05529 
2.05732 
2.12113 
2.12691 
2.14407 
2.14558 
4.32125 
4.32557 
4.32125 
4.32680 

1.01592 
1.01668 
0.252322 
0.280007 
6.36662 x lo-' 
7.57075 x lo-* 
1.03798 
1.04 120 
2.13180 
2.14385 
2 * 2 9 5 4 4 
2.33781 
2.24440 
2.28918 
4.58882 
4.63035 
4.58882 
4.64601 

TABLE 1. Pendant drops. The lower of each pair of values is the numerical result. 

-p  = 10-4 - p  = 10-2 -p = 0-03162 - p =  10-1 

X P  0.999983 
0 * 9 9 9 9 8 3 

ZH 8.16497 x 10-8 
8.16415 x lo-* 

XM 6.66667 x 

Y P  0.999960 
0.999960 

Y H  1.99957 
1.99957 

YM 1.99923 

- 

0.998333 
0.998342 
8.16497 x 
8.08481 x 
6.66667 x 

- 
0.996023 
0.996054 
1.97201 
1.97239 
1.95402 

0.994730 
0.994815 
0.145 196 
0- 140846 
2.10819 x 

0.987423 
0.987730 
1.92362 
1.92656 
1.87887 

- 

0.983333 
0.984151 
0.258199 
0.236010 
6.66667 x lo-' 

0.960228 
0.963129 
1.79686 
1.81742 
1.69371 

1.93732 V P  2.09424 2.07869 2.04472 
2.09424 2.07883 2.04612 1.95049 

V H  4.18837 4.14690 4.05633 3.76991 
4.18837 4.14745 4.06162 3.78782 

VM 4.18837 4.14690 4.05633 3.76991 

TABLE 2. Sessile drops. The lower of each pair of values is the numerical result. 

6. Comparison with numerical results 
In  tables 1 and 2 values of 2, y and V a t  the characteristic points P ,  I and N (or 

P ,  H and M )  calculated from the foregoing expressions are compared with the corre- 
sponding numerical results of Hartland & Hartley for values of 1/31 up to about 0.1. 
The correspondence becomes closer the smaller I/?] is, the fractional difference in that 
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FIGURE 7. Profile of (a) a pendant drop (/3 = 0.0955) and (6)  a sessile drop (/3 = 0.1). 0 ,  numerical 
results (Hartland & Hartley); A ,  equation (22); B, equation (27); C, equation (45). 

part of the quantity depending on /3 [for example in V,- $77 in the case of V,: see (83)] 
being of the order of /?. 

The full profiles for the larger two 1/31 values are compared in figures 7 (a) and (b) .  

7. Pendant drop profile of maximum volume 
According to the wetting properties of the fluids concerned the circular bounding 

line between the two fluids and the material of the supporting tube may be either the 
inner or the outer edge of the tube mouth (figure 8). In  either case the radius of this 
line will be called r and the angle at  which the drop profile intersects the plane of the 
tube mouth 4. Unlike the contact angle between a fluid interface and a continuous 
solid plane, the angle 4 is found experimentally to be capable of taking on a whole 
range of values,t and any intersection of a drop profile with a horizontal plane is 
therefore a possible junction between the drop concerned and a tube of appropriate 
radius. 

During the growth of a pendant drop or bubble the plane of the tube mouth moves 
away from the apex of the profile (figure 9). The associated value of R, and hence the 
scale of the profile, first decreases, reaching a minimum when the drop is approximately 
hemispherical (figure 9, case c), and then increases until the plane of the tube mouth 
reaches the point N (case e ) .  Further displacement of this plane (casef) necessitates 

t The mechanism which enables equilibrium between the three media, to  occur at more than 
one 9 value has not, to the author’s knowledge, been elucidated. Is the boundary in fact located 
a very small distance from the solid edge, this microscopic distance varying with 9 ? 
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FIGURE 8. Pendant drop or bubble attached to a tube. 

( e )  (d  1 (4 (b)  
FIGUEE 9. Growth of a pendant drop or bubble. 

a decrease in the scale of the profile, and hence in the volume V, below the point N .  
Once the decrease in V, is no longer compensated by the increase in the volume V, 
enclosed above the point N (the shaded region) the maximum possible volume has 
been reached and further growth must result in detachment. 

For small values of p, the point at which this occurs may be obtained from the 
previous results as follows. Reverting to the use of unprimed symbols to denote 
dimensional quantities, (33) gives 

to first order in p, 

A reduction in xN due to growth of the drop in stage (f) (figure 9) thus causes a reduction 
in R and so in p: 

xNIR = 8P ( 6 2 )  

i.e. X N  = i p g R s / ~ ~ .  (63) 

(64) 
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From (55), V, = +n~3(1  +p), (66) 

and use of (64) and (65) gives the corresponding reduction in V,: 

dV, = @~[3(1+ / I )R~dR+R~d/3 ]  = 4nR2(1+5/3)dR 

If the ratio of the tube radius r to X ,  is written as 

r l X N  = r / ( # / 3 )  = + &t2, (68) 

(69) 

where t is expected to be very small, then (45) gives for the height 6 of the shaded 
zone (figure 9, casef) 

6 = &3tR. 

The volume V, of the shaded zone is thus 
- v, = 7rx26 N nxg 6 

since x varies between X ,  and x,( 1 + it2) and E2 is presumed very small. Thus 

V, = nR3(&3)'( (70) 

and dQ N nR3(33)3dt (71) 

since large fractional changes in 5 cause comparatively little variation in R and /3. 
The relation between d t  and dx,  may be found from (68): 

X ,  = r / (  1 + it2) _N r( 1 - it2), (72) 

dxN = - rcdc  2: - xN Ed[ = - &3REdE. 

Use of (67), (71) and (72) shows that the criterion that the drop volume be a 
maximum is 

dQdrop = 0 = d K + d v ,  

i.e. (73) 

The value of 5 is indeed extremely small and it is evident that the maximum-volume 
situation is very close to that in which the point N lies in the plane of the tube mouth 
(figure 9, case e ) ,  for which 

X N  = r ,  6 = 0, KroP = VN,  $6 = in. 

The corresponding values for the maximum-volume case are found from (73) to be 

X ,  = r( 1 - i t 2 )  = r( 1 - zip6), SIR = 3/3[ = -9-/34, 2 7  

V a x  = (&drop)+,, (1 + &Pg), 
$6 = inn+( = 47T+&/33, 

i.e. sin $6 = 1 -.&Po. (74) 

The differences between the two sets of values of xN and brop are of a much smaller 
order than the accuracy of the expressions previously obtained for x, and V,, so 
these expressions apply with equal accuracy to the maximum-volume case: 

V,,, = +7rR3( 1 +@), x ,  = r = &3R. (751, (76) 
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Since p is a function of R, R may be eliminated from (75) and (76) to obtain VmaX as a 
function of r .  As (75) is accurate to only first order in p, the resulting expression 
cannot be stated more accurately than as 

Vmax = 2nru- /pg .  (77) 

Equation (74) indicates that the amount by which sin# differs from I in the 
maximum-volume case is extremely small ( N 10-8 for p = 0.1). The approximation 

sin# = 1 (78) 

must therefore remain valid up to /3 values considerably greater than those at  which 
the other predictions of the present theory apply. This is made use of in the next 
section to obtain an expression for V,,, of greater accuracy and wider applicability 
than (77). 

8. Maximum volume derived from a force balance 

balance to be performed. The forces acting on the drop are as follows (figure 10). 
The approximation (78) for the profile of maximum volume enables a simple force 

(1) An upward surface-tension force of magnitude 2nru. 
( 2 )  The weight of the drop: Vmaxpl g .  
( 3 )  The downward force due to the pressure of the drop fluid in the plane of the 

tube mouth: nr2(r)1),outh. 

( 4 )  The upward force due to the pressure of the external fluid on the outer surface 
of the drop. 

Were the pressures inside and outside the drop equal in the mouth plane, the total 
pressure force would be the same as if the drop were wholly currounded by fluid 2 ,  
namely the Archimedes upward buoyancy force Vmmsxpzg. The force balance then 
leads to (77), often called Tate’s law. In general, however, (P1)mouth + @$)mouth and the 
sum of forces 3 and 4 is the upward force Vmaxpz g - nr2(pl -r)2)mouth. The total force 
balance then gives 

Vma,pzg-nr2(~1-r)2)mouth+ 2nru-%vnlaxP1g = OY 

1.e. VmaxPg = 2nru-nr2(~1 - ~ 2 ) m o u t h *  (79) 

The pressure difference in the plane of the tube mouth may, with the help of (1) and 
(2), be expressed in terms of the pressure difference 2 u / R  a t  the apex and the height 
of the drop h (figure 10): 

Combining (79) and (80) gives 

(Pl -?%)mouth = 2u/R - gph* (80) 

Vmaxpg = 27rru - nr2(2u/B - g p h ) ,  

i.e. Vmax = ( 2 n r c / P g ) f ,  (81) 

where f = 1 - -  1-p - .  R r (  A) 
The factor frepresents the degree to which Vmax differs from the value given by Tate’s 
law. Since rlR = O(p) and h / 2 R  = O(1) the two terms by which f departs from 1 are 
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seen to be of the order of B and B2. An accurate expression for these terms may be 
obtained as a function of the dimensionless quantity 

as follows. 

(46), in the plane of the tube mouth), 

x = r(3VmaX/47r)-4 (83) 

From (75) and (46) (which applies since the point N lies, within the accuracy of 

1/R = (4n/3V,,,)f tl + *B + 0(P2)1 (84) 

and h/2R = 1 + 0(/3). (85) 

f = 1 - x D +  SB+ 0(P2)1 t1 -B + O(P2)l 

Substituting (84) and ( 8 5 )  in (82 )  yields 

= 1-x[1-&3+0(/?2)]. (86) 

Furthermore, from (84) and (76), 

r/R = x[1+ +P+ O(p2)] = $8 + O(Bz)). 

P = %Y i- 0(x2). 

f = l--X+X2+O(X3). 

Hence x = O(P)  and (87) reduces to 

Substituting (88) in (86) gives 

The value of x is not directly calculable from values of r, p, 5 and g and it is therefore 
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more useful to obtain an expression forfin terms of the directly calculable dimension- 
less quantity Po:? 

P o  = (3Pgr2/4+. (90) 

The relation between Po and x is obtained by substitution of (89) in (81): 

x = P O [ l +  9x - $x2 + 0(x3)1 = O(P0). (92) 

x = P O P  + &Po + O(PW (93) 

f = 1-Po++i38+0(Pi). (94) 

Substituting this expression for x into the right-hand side of (91) yields 

Substitution of (93) in (89) givesf as a function ofPo: 

From this equation, together with (81), the value of V,,, is directly calculable from 
r, p, u and g. 

The relation between B and Po is obtained from (88) and (93): 

The restriction of the present analysis to values of P small in comparison with unity 
thus implies a similar restriction on Po and thereby on the size of the tubes concerned. 
The tube radius at which the pendant profiles become unstable to small perturbations, 
3*219((r/pg)*, corresponds to a Po value of 1-9 and so lies far outside the range of tube 
sizes considered here. 
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